Global Renormalised Solutions and Equilibration of Reaction–Diffusion Systems with Nonlinear Diffusion
نویسندگان
چکیده
Abstract The global existence of renormalised solutions and convergence to equilibrium for reaction–diffusion systems with nonlinear diffusion are investigated. system is assumed have quasi-positive nonlinearities satisfy an entropy inequality. difficulties in establishing caused by possibly degenerate overcome introducing a new class weighted truncation functions. By means the obtained solutions, we study large-time behaviour complex balanced arising from chemical reaction network theory diffusion. When does not admit boundary equilibria, shown, using method, exponentially attract same compatibility class. This extends even range diffusion, where open problem, yet able show that approximate converge uniformly regularisation parameter.
منابع مشابه
Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملBlow up versus Global Boundedness of Solutions of Reaction Diffusion Equations with Nonlinear Boundary Conditions∗
In this paper we analyze the behavior of solutions of reaction-diffusion equations with nonlinear boundary conditions of the type (1.1). We show that if f(x, u) = −β0u and g(x, u) = uq in a neighborhood of a point x0 ∈ ΓN , then i) for the case q > 1, if p + 1 < 2q or if p + 1 = 2q and β0 < q, then blow up in finite time at x0 occurs. ii) for the case p > 1 if p + 1 > 2q or if p + 1 = 2q and β0...
متن کاملExistence and Nonexistence of Global Positive Solutions to Nonlinear Diffusion Problems with Nonlinear Absorption through the Boundary
This paper deals with the existence and nonexistence of global positive solutions to ut = ∆ ln(1 + u) in Ω× (0,+∞), ∂ ln(1 + u) ∂n = √ 1 + u(ln(1 + u)) on ∂Ω× (0,+∞), and u(x, 0) = u0(x) in Ω. Here α ≥ 0 is a parameter, Ω ⊂ RN is a bounded smooth domain. After pointing out the mistakes in Global behavior of positive solutions to nonlinear diffusion problems with nonlinear absorption through the...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Existence and Equilibration of Global Weak Solutions to Kinetic Models for Dilute Polymers I: Finitely Extensible Nonlinear Bead-spring Chains
We show the existence of global-in-time weak solutions to a general class of coupled FENE-type bead-spring chain models that arise from the kinetic theory of dilute solutions of polymeric liquids with noninteracting polymer chains. The class of models involves the unsteady incompressible Navier–Stokes equations in a bounded domain in Rd, d = 2 or 3, for the velocity and the pressure of the flui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Science
سال: 2023
ISSN: ['0938-8974', '1432-1467']
DOI: https://doi.org/10.1007/s00332-023-09926-w